
PROPAGATION OF SMALL PERTURBATIONS IN A LIQUID WITH BUBBLES 
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The problem of the propagation of small perturbations in a liquid with bubbles has been 
studied in one form or another in [1-7] and for a gas with particles in [8]. 

i. Linearization of the System of Equations. We consider the propagation of small 
perturbations in a liquid with gas bubbles under the following assumptions. The wavelength 
of sound is very much longer than the average distance between bubbles, which is very much 
larger than the size of the bubbles; i.e., the cubic content of the gas phase ~ is rather 
small, a < 0.I. The mixture is polydisperse; i.e., in each elementary volume there are m -- 
1 kinds of bubbles, all containing the same gas. Capillary effects are neglected (the bub- 
bles are not very small). The viscosity and thermal conductivity are important only in in- 
teractions between bubbles and the liquid phase, and in radial pulsations. 

We use the linearized system of equations [9] generalized for the polydisperse case. 
The equations of conservation of mass, the number of bubbles, momentum, energy, and pulsa- 
tional motion have the following form: 
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where p, p ~ v, p, n, u, w, and 6 are, respectively, the perturbations of the average densi- 
ty, true density, velocity, pressure, number of bubbles per unit volume, internal energy, 
radial mass velocity of the liquid at the phase boundary, and diameter of the bubbles; the 
~i are the volume concentrations of the phases; I is the heat of vaporization; and ~ is the 
kinematic viscosity of the liquid. 

The system of equations (i.i) will be closed if we specify expressions for the interac- 
tion force fi, heat transfer q~, qoi, mass transfer Ii, the equations of state of the phases, 

and certain kinematic relations. 

The following relations can be taken for the interaction force and heat transfer: 

] ~nio~io ~0 0 
f i  = ]mi + ]Ii ,  /mi  2 -# rio ~ (v l  - -  vi),  ]t~ = xnio6ioVlP?o (v l  - -  vi); 

0 0 
ql ---- nn~o6ioNui (T1 - -  T~i), qoi = -~nio6ioNuoi (Ti - -  Toi), 

where X = 3~ for Stokes' law of flow and X = 6~ for Levich's law [i0]; Nu? and Nuoi are the 
Nusselt numbers for surface heat transfer from the liquid and gas phases,lrespectively. 
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The equation for the phase-transition kinetics for the linear nonequ• theory can 
be written in the form 

I ,  = ~n,o62o~,(T, , - -T~f)=nnio82o ~.~.o F i .... F ,  = l. ] ' 

where S i is the mass-transfer coefficient. If it is assumed that Toi = Tsi , i.e., that the 
temperature at the surface of the bubbles is equal to the saturation temperature at the pres- 
sure inside the bubbles (quasiequi!ibrium or equilibrium model [ll]), the intensity of the 
phase transitions is determined automatically from the energy equation of the surface phase. 

As the equations of state of a two-phase single-component system we use the relations 
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In the absence of phase transitions the equations of state have the form 
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( 1 . 3 )  

We add the kinematic relations 
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We introduce the dimensionless variables 
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and the reduced variables 
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Using (1.4) and (1.5), the system of equations 
sionless variables: 

(i.I) takes the following form in dimen- 
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The equations of state and Eqs. (1.3) take the form 

For fmi' ffi, 
the expressions 
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q i  , q o i ,  and ! i r e p r e s e n t i n g  i n t e r p h a s e  i n t e r a c t i o n s  and f o r  N r i  we have 

_. W, i �9 i I a (U1- -U~) ,  f~ u 1 - u ~  ; % ~ = - - ,  
f m i - -  2 r Oz " - -  Tri  ' l:r~ 

q~.  O I -  0(~r * O i - -  Oz~ * e ~ i - -  Os~ 
- -  q o i  - -  , I i  = , 0 

T i TO/  T m ~  

�9 ~ o 0 2 nr6To a* OToa* 0 P/oR26io a* 
Xt' i  = 67.Vi. ' T r i  : " ~ 7  ~ Ti  - -  6)',i ~qUi- 0 ' 

o "~ O~oTo6i a ,  9~oR~a~oa* o (i --  2, 3, m), 
�9 to i - -  O, zNUo i ' "Cmi= 6Flo -- . . .  

where Zvi , Tri , T~, Toi, and rmi are the reduced relaxation times, We note that Eqs. (1.6) 

are written for the perturbations. We reduce this system to a more convenient form. Using 
Eqs. (1.7) we obtain from the equations for the conservation of mass and the number of bub- 
bles 

A2oCq~ OP' ~_2 ( O q ~ O v  aio ~ OD~'). + r + 3 (r -- 1) --jy-! 
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Instead of the momentum equation for the first phase we use the momentum equation for 
the whole mixture 

o~ OU~ 2 OU~ OP~ 
to --a-C + ra~o -o'C + ~ = O. 

i = 2  

Using (1.8) we write the second equation for pulsating motion in the form 

W~ t f oD " / 
6 

2- Propagation of Harmonic Vibrations. We consider the propagation of plane periodic 
waves. We seek the solution in the form of a damped traveling wave 
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~ , ,  ~ ,  P , ,  Ui, O, N exp [i(Kx - -  ~t)] e--dXexp [ i (kx - -  ~t)l, 

K = k + i d ,  ap = Apa.  = ~/k, 

w her e  K i s  t h e  wave v e c t o r .  The complex  numbers  d and a p a r e ,  r e s p e c t i v e l y ,  t h e  damping f a c -  
t o r  and t h e  p h a s e  v e l o c i t y  o f  t h e  wave ,  d e t e r m i n e d  by t h e  i m a g i n a r y  and r e a l  p a r t s  o f  t h e  
wave v e c t o r .  H e n c e f o r t h  i n s t e a d  o f  t h e  f r e q u e n c y  ~ we use  t h e  d i m e n s i o n l e s s  f r e q u e n c y  ~ = 
~ 8 o / a , ,  whe r e  8o i s  some a v e r a g e  d i a m e t e r .  A f t e r  s u b s t i t u t i n g  i n t o  s y s t e m  ( 1 . 6 )  and ( 1 . 7 ) ,  
t h e  c o n d i t i o n  f o r  t h e  e x i s t e n c e  o f  a n o n t r i v i a l  s o l u t i o n  o f  t h i s  t y p e  i s  t h e  v a n i s h i n g  o f  
t h e  d e t e r m i n a n t  o f  t h e  c o e f f i c i e n t s  i n  t h e  a m p l i t u d e s  o f  t h e  p e r t u r b a t i o n s .  Th i s  c o n d i t i o n  
g i v e s  a r e l a t i o n  b e t w e e n  t h e  f r e q u e n c y  o f  t h e  p e r t u r b a t i o n s  and t h e  wave v e c t o r .  I t  i s  d i f -  
f i c u / t  t o  o b t a i n  t h e  d e t e r m i n a n t  d i r e c t l y  i n  t h e  p o l y d i s p e r s e  c a s e ,  and t h e r e f o r e  we f i n d  
t h e  n e c e s s a r y  c o n n e c t i o n  s t e p  by  s t e p  by e l i m i n a t i n g  t h e  a m p l i t u d e s  o f  t h e  p e r t u r b a t i o n s .  

From t h e  f o u r t h  o f  Eqs .  ( 1 . 7 )  

H v ~ U I +  i~~ (2.1) 
V i = HVli  ; 

here 

H~, = rfi__~o _ i11 (r + t/2), H~2i = r~_._~o _ _  il 1:2. 
Tv i Tv i 

Substituting (2.1) into the third of Eqs. (1.6), we find 

i=2 i=2 I lv l i  
(2.2) 

Hence 

n ,ilvli Px. ( 2 . 3 )  

From the remaining equations of system (1.6) we express z i = re ~ + 3(r -- I)D. in terms 
of Px. From the equations for pulsating motion l l 

IIrizi = Pl  - -  P i ;  (2.4) 

here 

Taking account of (2.4) and the equation of state for the second phase (1.7) we obtain 
from the second equation for pulsating motion 

(,*1 t i~l O: / ,rl i p l _ (  t 0~, i~lO, = 0 .  ( 2 . 5 )  
8o n,~ ~o + ( l " r ) ~ / P '  aoa,~ - - r ) ~  + % T -  \ 

Using the equation for the internal energy of the bubbles and eliminating | we have 

from Eq. (2.5) 

(( ")[ oo oo oo, x-~[-- C~-~o ( i  - -  r l - l~  in - - (1  --  r) 0; _Bi~J~filp~-a- 
(2.6) 

Eliminating | from the energy equations for the surface phase and for the bubbles, we 
i 

o b t a i n  

(, i '  (' ( ,  1oo=0 ,27, 
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Eliminating Pi from (2.6) and (2.7), we have 
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Substituting the expression found for | . into the 
we find ol  

here 

energy equation for the first phase 

(2 .8)  
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Eliminating | from Eqs. 

where 

(2.6) and (2.7) and using (2.8) we obtain for z i 

( HT2 i --1 --1 
zi = \ 1 + 

Ilrl~ 
(2.9) 

into 

here 

Finally we obtain the dispersion relation after substituting (2.2), (2.3), and (2.9) 
the equation for the conservation of mass for the whole mixture and cancelling P~: 

~i2K~ ( m \--I m ) 
(2.10) 

When m = 2, i.e., for the monodisperse case, 
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here 

I I  o = Re [ I  o q- I m  IIo, Re H o = (1 - -  r) (0~ (C2 - -  C~/M) -4- B) ,  

I m  II  o .  = (r - -  1) O~C2 I + ~-~ -4- B ~i M 6 o ' g = O~L%/'zm' 
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Equation (2.10) is written in the most general form. Special forms can be obtained 
from this equation. For example, WT = 0 corresponds to the case C, = ~; i.e., the carrier 
phase behaves as a thermostat. The equation z. = 0 implies that phase transitions, heat 

�9 l 

transfer, and inertial and dissipative effects for radial pulsations do not lead to disper- 
sion. 

For the dimensionless phase velocity of sound A = 6ok/n and the damping factor d we 
have P 

[ 2 ]~/2 i 
Ap = [~ + (@ + r , d = ~- ~Ap~/8o, 

where ~ and ~ are the real and imaginary parts of the right-hand side of Eq. 
0 and n § ~ we find, respectively, the equilibrium and "frozen" sound speeds 

(2.10). As ~ + 

- - 2  
(2. e { =,o + (t -  )(el + CCM) + (1 - -  8;)  L)) ,  = =72(1 + (,--- l)) 

- - 2  - -  t - -  ~C2o ( r  - -  | )  
a t = a l 2 ~ t o  ~-, 

a~  -2 .  
�9 t -]- 20510 (U2o - -  r a l o  ) 

Here e2o = 1 -- ~o; i.e., e2o is the total volume concentration of the gas phase. 

For Po = i0 bar we have for water 

@ ~ - - - i 0  - l ,  L ~ 1 0 ,  C 1 ~ ' 2 ,  C2--~10,  B ~ - - l ,  
- -2  r ~ 2 �9 i 0  - 2 ,  Ato --~ l 0  - 3 ,  =2o "" 1 0 - 2  ; 

hence | >> | B, L (| -- i), and therefore 

2 2 ~ '  a~ = a~Lr/  8CI; ( 2 . 1 2 )  

i.e., in this case the equilibrium sound speed is practically independent of the volume con- 
centration of bubbles. The equilibrium sound speed (2.12) agrees with the speed from [12]. 
For the parameters listed, a e = I0 m/sec. 

When the inertia of the bubbles resulting from their mass can be neglected, i.e., for 
r << i, we obtain for the "frozen" damping factor df:j 

! 

dl = 2~0A~ i ~i (i q- 2~io (i -- ~io,,~ x'-312 (z~i = zv, lr). 

In the monodisperse case for ~aa << i 

d~ = 2~2o/Alo~.  
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It should be noted that df = 0 for the one-velocity model. This results from the fact 
that as the frequency approaches infinity the radial motion of the bubbles is "frozen," i.e., 
D i = 0, and therefore the dissipation in radial pulsations because of heat transfer and vis- 
cosity vanishes. From Eq. (2.3), when r << i, we have for the asymptotic form of the ratio 
of the perturbations of the i-th(i= 2, 3, ..., m) and the first phase as ~ § 

U d U ~  ~-- (I + 2a~o) - -  3. 

Thus, according to the m-velocity model, dissipation because of viscosity remains as a 
consequence of phase transitions, 

3. No Phase Transitions. In this case we have from the equations of state (1.3) 

( + 

I I r 3 i  - -  - -  I IT~i  --= i~ lB  I Im$i  = 1 ,  l~T5 i = - -  iNC2.-2a l - .  

For a monodisperse mixture we have the dispersion relation 

5~ --  1~ -Cr  t - - i  n ( a ' o + t / 2 )  t _ . ~ ]  t , ~]" r 60j l - - i ~ l  2 r 

+ J + o -o [0 + + 

• M ao) + 4- ~ 6ol] / +i~l- -c  -CI ]  j' 

where 

B = -- t ,  C~ = 'hi(72 -- 1) (~,~ = %2 ! c ~ 2 ) .  

For the equilibrium sound speed we have the expression 

a e  2 = a~ -2 (i @ 0~20 ( r -  1)).(-79-..,a~~ _~_ a~ ~ (I -~ l - -~2  ) /  
A'(o _ y s % - ( ] ~ - - I )  C { M .  j " \ 

For a pressure Po ~ I-I0 bar and for volume concentrations a2o ~ 10 -2 in the liquid-- 
bubble mixture for 

we have 

. __9 
r ~ iO -~,  C 1 / M  ~_ 10% Aio ~ - -  I 0 - ,  ~ 

a 2 

(zlO~2O i070 CLIOC~2O 

The expressions obtained for the equilibrium and "frozen" sound speeds agree with those 
which follow from a consideration of the conditions for the existence of condensation waves 
[13] in two-phase media. 

4. Generalization for a Continuous Distribution of Bubble Sizes. So far it has been 
assumed everywhere that the bubble sizes have a discrete distribution, i.e., there are m -- 1 
kinds of bubbles. All this can be generalized for a continuous distrlbu~ion. 

We introduce a density distribution function for the bubble diameters ~(~) such that 

6,o 

! 

Each term x(~o)A~io corresponds to an aio of the previous treatment. Therefore, formal- 
ly replacing eio by ~(6~o)h6~o and going to the limit as max (A~o) + O, we have instead of 
the dispersion relation (2.11) 
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n~ LA~o + 0 - ~ o )  ~,oS ,,*~d~o/., ~o~o +(i-~o)~,o j" ~*ya~; , (4.1) 

where x* is the normalized distribution density; i.e., ~= (1 -- ~ x o ) ~  * .  

For the remaining variables in (4.1) we have 

( : 0)I i 0 n~ = t/axo + riM x* H ~ d 5  t + M .  • ; 
61o 6~, 

y = (gym-iv2 -q- g~)/[Ivi , Z = I ~ gTI]T4 ~ 1"I r + t -F" - -  ' n7,~--~T,./ n~,) J 
{ ' [ ( ] }/6'~0 IIT5 ~: [ 
t6,, r lT t ]  HT1 

( 
-4-, I I~  \ !  4-  nrl]] , n r , )  - -  

(M = (1 - -  ~o)  r/~lO). 

The expressions for ~T, ~-, and ~r are the same as before with 6io replaced by ~. 
Equation (4.1) agrees with tha~ for a monodisperse mixture if the density distribution func- 
tion is taken as the delta function e(~ -- ~o). In the one-velocity case for isothermal be- 
havior of the bubbles the dispersion relation takes the form 

,~ =~"|A~o +(l-~~ I - ~ , , N J  I as;. 

This equation agrees with the one obtained in [3]. Heat transfer is taken into account 

in a similar way [13]. 

5. Results of Calculations. In the monodisperse case the effects of various factors 
on the phase velocity and the damping of sound were tested. Two-velocity effects were 
checked by using the Levich and Stokes equations for the force of friction. 

Figures i and 2 show the dispersion curves for the following values of the thermodynamic 

parameters: 

p~ o = J0  s kg/ms, a x =  ].5-103m/see,v1 = 0 . 2 .  i 0  -6 mZ/sec, 

Cl = 4.4.103 m2/sec z. deg, y2 = 1.4, ~,~ = 2 .47 .10  -3 kg. m,/see 3. deg, 

Z,~ = 0 .65kg[m/sec  3" deg, po=2 bar, TO = 300  *K, R2 = 0 .287 .10  s m2/sec 2. deg. 

Curve i was calculated from the dispersion relation without phase transitions for the 
discrete distribution of bubbles given in [i] with Nu~ = 102 and Nuoi = 10, curve 2 from [i] 
for the same distribution, 3 for an average monodisperse mixture (~o = 0-ii "10-s m), and 4 
shows the spread of experimental points. 

Figure 3 shows the dispersion curves for values of the thermodynamic parameters for 

water: 

Po = i 0  bar-, To = 452 *K, l = 2.0i4-10em2/sec2, ' a l  = 1.5.  t0  z m/see, 

cl = 4 .4 .1  o 3 mVsee 2. deg. ;q = 0:64 kg. m/see ' degV "i = 0.2.  t0"6 m2~'s~e. 
/ ~  = 0 .59.  i0ZmZ/sec 2 �9 deg,cp~ - -  t . 9 .  t03 mZ/see z. deg, ks = 

~' = 3 , t 4 -  iO - s  kg.  m~ec 3. deg; 
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The Nusselt numbers were taken as Nu~ = 3-102 and Nuoi = 30. 

Figure 3 shows the dispersion curves in the monodisperse case for bubbles with 8o = 
I0 -s m and cubic content ~2o = 0.2"10 -2 �9 Curve 1 is for "equilibrium" phase transitions, and 
2 and 3 are dispersion curves with kinetics F corresponding to F = 10 -2 and i0 -~ kg.deg-sec/ 
m ~, respectively. The dispersion curves for F ~ 1 kg.deg.sec/m 4 practically coincide with 
the dispersion curves for "equilibrium" phase transitions, and those for F ~ i0 -~ kg-deg* 
sec/m 4 with the curves for no phase transitions. 

Calculations showed that in taking account of the actual heat transfer, multivelocity 
effects produced practically no change in the phase velocity and the damping. An increase 
in the volume concentration of bubbles of fixed diameter leads to a displacement of the ex- 
tremes of the phase velocity and the damping factor toward higher frequencies of the pertur- 
bations. 

For bubbles of diameter 6o ~ i0-~-i0 -3 m heat transfer is determined by their thermal 
resistance, since T ~  ~ 0(102). For a change in T O , i.e., in Nu 0, by an order of magni- 
tude, the dispersion curves are unchanged, but for a change in To, i.e., in Nuo, by an order 
of magnitude, the damping factor is changed appreciably. 

For realistic values of Nuo the damping factor for no phase transitions varies nonmono- 
tonically with the Nusselt number Nuo. As the Nusselt number Nuo is increased the damping 
factor increases to a maximum and then gradually decreases. 

Calculations of the dispersion relations showed that in all the cases considered '~T 
could be set equal to zero; i.e., the liquid could be considered a thermostat. For phase 
transitions with kinetics F an increase in F leads to an increase in the damping factor. The 
dispersion curves with kinetics F in this case approach the dispersion curve with "equilibri- 
um" phase transitions. Effects due to a change of the heat-transfer coefficient were tested 
when phase transitions occur. In contrast with the case of no phase transitions the disper- 
sion curves for "equilibrium" phase transitions are more strongly dependent on external heat 
transfer than on internal. 

The introduction of polydispersity leads to an essentially nonmonotonic dependence of 
the dispersion curves on the frequency of the perturbations. This accounts for the large 
spread of experimental points, particularly in [i], where dispersion curves in monodisperse 
and polydisperse cases are compared with experiment. Two size distributions of bubbles were 
assumed: first by the introduction of a certain average bubble radius and second by the in- 
troduction of polydispersity. The dispersion relations in [1] agree with ours in form if 
equality of phase velocities and isothermal behavior of the bubbles are assumed, i.e., there 
is dissipation only from viscosity in radial pulsations. Dissipation from acoustic radiation 
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and heat transfer was taken into account in [i] by introducing an effective viscosity. We 
make a different but equivalent assumption that the viscosity 9, = 0(10 -2 ) m2/sec. As noted 
in [4] this value of the effective viscosity is more than five times larger than it should 
be actually because of heat transfer, acoustic'radiation, and viscosity for radial pulsations. 

LITERATURE CITED 

i. Francis E. Fox, Stanley E. Curley, and Glen S. Larson, "Phase velocity and absorption 
measurements in water containing air bubbles," J. Acoust. Soc. Amer., 27, 534 (1955). 

2. E. Silherman, "Sound velocity and attenuation in bubble mixtures measured in standing 
wave tubes," J. Acoust. Soc. Amer., 29, 925 (1957), 

3. V. K. Kedrinskii, "Propagation of perturbations in a liquid containing gas bubbles," 
Zh. Prikl. Mekh. Tekh. Fiz., No. 4, 29 (1968). 

4, L. van Wijngarden, "One-dimensional flow of liquids containing small gas bubbles," Ann. 
Rev. Fluid Mech., ~ (1972). 

5. V. E. Nakoryakov and I. R. Shreiber, "Propagation of small perturbations in a vapor-- 
liquid mixture," in: Problems of Thermal Physics [in Russian], Nauka, Novosibirsk 
(1974). 

6. G. K. Batchelor, "Compression waves in a suspension of gas bubbles in a liquid," in: 
Mekhanika [Periodic collection of translations of foreign articles], No. 3 (1968). 

7. A. Crespo, "Sound and shock waves in liquids containing bubbles," Phys. Fluids, 12, 
2274 (1969). 

8. A. I. Ivandaev and R. I. Nigmatulin, "Propagation of weak perturbations in two-phase 
media with phase transitions," Zh. Prikl, Mekh. Tekh. Fiz., No. 5, 73 (1970), 

9. R. I. Nigmatulin, "Small-scale flows and surface effects in the hydrodynamics of multi- 
phase media," Prikl. Mat. Mekh., 35, 451 (1971). 

i0. V. G. Levich, Physicochemical Hydrodynamics [in Russian], Fizmatgiz, Moscow (1959). 
ii. D. A. Labuntsev and G. M. Muratova, "Physical and methodical bases of the formulation 

of problems of heat and mass transfer in phase transitions," in: Heat and Mass Transfer 
[in Russian], Vol. 2, Minsk (1972). 

12. L. D. Landau and E. M. Lifshits, Fluid Mechanics, Addison-Wesley, Reading (1959). 
13. R. I. Nigmatulin and V. Sh. Shagapov, "Structure of shock waves in a liquid with gas 

bubbles," Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 4 (1974). 

86 


